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PROPOSED REFERF_CE MODELS FOR CO 2 AND HALOGENATED HYDROCARBONS

P. Fabian

ABSTRACT

Max-Planck-Institut for Aeronomi_

D-3411 Kat_nburg-Lindau. Fedea'al Republic of Germany

The vertlcal distribution of carbnn dioxide, halocarhons and their sink prnd,cts, HCI and

lIF, have become available, mainly hy n_ans ot balloon ,eas_wemeots. Most measurements were

made at northern mid-latitudes, but some constituents were measured at tropical latitudes

and in the southern hemisphere as well, This report attempts to combine the available data

for presentation of reference models for C02, CC)4, CCI3F, CCI_2, CCIF3, CF4, CCI_-CCIF2,

CCIF2-CCIF2, CCIF2-CF3, CF3-CF_, CH3CI, CHCIF2, CH3-CCI3, CBrCIF2, CBrF_, HCf and HF.

INTRODUCTION

C02 is a natural constituent of the atmosphere tho.qht to be well mixed up to the

turbopause. Due to the burning of fossil fuel, however, CO 2 abundances increase steadily at

ground level resulting in CO 2 profiles which fall off with altitude in the stratosphere.

Halogenated hydrocarbons (halocarbons) are source gases for ClOx, FOx- and

BrOx-radicals in the stratosphere. Besides methyl chloride (CH)CI], the halocarbons
discussed here originate almost entirely from anthropogenic sources: While CFC-]O (CCI_),

CFC-113 (CCI2F-CCIF2), and CFC-140 (CH3-CCI3) are mainly used as solvents, _FC-22 (CIICIF2)

and CFC-13 (CCIF3) are chiefly applied as refrigerants. Ct:C-ll4 (CCIF2-CCIF2) , CkC-215

(CCIF_-CF3), CFC-11 (CCI3F), and CFC-12 (CCI2F2) are used as prope(lants and refrigerants,
the two latter ones for foam blowing as well. CFC-14 (CFw) and CFC-II6 (CF3-CF3) are

released from aluminium plants, but CF W is likely to have natural sources as well, The

bromine containing species CFC-12BI (CBrCIF2) and CFC-13BI (CBrF_) are released from fire

extinguishers. Most halocarbons have long overall atmospheric life times. Thus the
abundances of those _itted fronn anthropogenic sources are growlng w}th time (see table

I), The same holds for the sink products HCf and HF.

EXPERIMENTAL

Stratospheric C02 and halocarbon data presented here were obtained by analyses of

cryoge_Hcal)y co]lected air samples. C02 was analysed by infrared absorption /I/, while

halocarbon analyses were made by gas chromatoqraphy (GC) employing electron capture

detectors (ECD) as well as mass spectrometers (MS) for detection (e,g, /2-G/). _he

balloon-borne cryogenic whole-air s_plers flown by the MaxIplanck-Institut for Aeronomie
(MPAE) and the Kernforschungsanlage J_llch (KFA) are described in /7/ and /8/,

respectively. The stratospheric dRta are limited to balloon altitudes, i.e. up to about 35

km. Tropospheric data available from analyses of air samples collected aboard aircraft are
also presented.

Vertical profiles of HCf and HF _ere obtainnd by various IR spectroscopic techniques,
mainly through the efforts of the internatirmal Balloon Intercodparison Campaigns (BIt)

conducted during 1982 and 19B3. Since these are discussed in detail in the NASA

Stratospheric Ozone Assessment Report 1985 /g/, they are not presented here.

RESULTS

CO 2

_yogenically collected air semples from 3 balloon flights carried out at 44°N during

November 1979, September 1982 and September 1984 were analysed for CO 2 using IR

absorption. Employing this techniques, flask samples can be analysed with a total error of

!_0.2ppmV corresponding to _0.06%. The results are plotted in flg.I supplemented

aircraft data obtained close to the balloon site during the same time periods /10/. A

striking feature of the CO 2 profiles is the overall _imIlarity of the stratospheric
portions above 20 km. Obviously, the general increas_ of the tropospheric abundance of C02,

resulting from the burning of fossil fuel, is rezlected by a stratospheric increase at a

corresponding rate. Mid-stratospheric mixing ratios, as averaged over the height range

above Z2 Icm, are 325.4t0.5, 329.6_.2, and 331.6_0.3 ppmV for 1979, 1982, and 1984,

respectively. Average annual increase rates thus amount to 1.2 p_mV/y between 1979 and 1984
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Avurage vertical distribution of halocarbons at northern midlatitudes, units: pptV (I0 -12
by volume). Ihese profiles correspond to the times given at the bottom of each column.

Overall atmospheric lifetimes, M/S ratios and trends are also given. Trend values marked by
an asterisk w_re derived from time-dependent model computations, they are as yet not
confirmed by measurements.

layer CCIw

(CFC-IO)
surface & lower

troposphere 130 190 35D

I0-11 km 96.5] 177._ 32g._ 1

11-12 km 86.5| 171._ 321.8
12-13 km 80.I_-I0% 171._ 314.7

13-14 km 73.2| 167._ 310.71

14-15 km 69.3| 163.71 307.4

15-16 km 66.0] 156.9_±6% 298.5

16-17 km 60.8 _7% 147.21 284.4

17-18 km 52.4 ±21% 133.5' 267.4
18-19 km 44.2 +-28% i18.3i 246.9
19-20 km 34.1 *-36% 98.01 218.2"

20-21 km 22.5 ±46% 76.0j 189.7i

21-22 km 13.6 ±59% 53.9 +-36% 160.3]
22-23 km 8.9 ±73% 35.7 -+40% 137.
23-24 _L 4.9 ±g0% 20.3 _7% 113,

24-25 km 2.3 100% 11.1 _50%
25-26 km 1.2 .z 5.8 _4%
26-27 km 0.3 3.5 _79%

27-28 km O.lj 1.4 -+90%

28-29 km 0.6_29-30 km 0.5 _00%

30-31 km 0.3I
3!-32 km 0.2_,c50%

_-33 km O_I
33-34 Km
34-_5 km

Corresponding SrptlOc[.
to time 1982-83

overall llfe 60-i00y
time

N/S ratio 1.07

trend 2%/y

CCI _ CCI2F 2 CCIF_ CFw CCIF-CCIF 2
(CFC-11) {CFC-12) (CFC-13) (CFC-14) (CFC-113)

4 70 23

zI.93i
2o.nI
2o.681
21 : 68_*_20%

3.9 i 65.2

l

-+7% 3.5 ] 66.6

-+12% 3.0__t0% 66.5
_+22% __10%

93.6 +25%

81.5_±28% I

69.2J 2.7 58. fi '_

55.9 -+18_ 'i
46.1 -+50% 2.5

4o.51 !
2g. 9: 1

24,31_t30% 2.] 61.8]

16.9 i15.6

21.95

22.83

zz.3i
20.99

17.81
15.51

12.25
10.01

8.43 _-32%
7.40
6.5,1

b.49_

4./9 i3.94

3.15 f
2.46.!

t. 90-:
1.39 j,_+65%

1.03 I
0.54]

Sept./_rt. Sept./Oct, Sept. Sept. Sept./Oct.
1980-83 1g[I0-83 19_0 1980 1982-84

55-93 y 105-169y 180-450y 10000y 63-122y

1.12 l.N7 -i -1 1.12

6%/y 5%/y 5%/y* 2%Iy* lO%/y*

CCIF2-CCIF 2
(CFC-II4)

11

*o.361
1o.o_l

g.89 I
9.571
9.31I
9.03_+-8%

8.s91
8.171
7.62i
6.911
6.131
5.531
5.1q
4.79J

4.28"

4.39
4.16

3.79

3.65 +-18%

3.72
3.33
3 16;
3.04
2.851

Sept.lOct.
1982 - 84

126-310y

1.05

6%/y

which is quite comparable with those observed at tropospheric levels, Annual means of

tropospheric C02, for the years discussed here, were found to be in excess of 6.8 ±0.9 ppmV
over the stratospheric mixin 9 ratios corresponding to a time lag uf 5,220.8 years, lhe

transition occurs between 10 and 22 km altitude, while there is almost no height dependence
of the CO 2 VMR above that height.

The tropospheric CO 2 profiles _hown in fig. I are representative of late summer/fall

conditions, when the C.mulative uptake of C0 2 hy plants reaches its maximum. Thus at ground

level, an annual minimum Is obtaihed in August/September. In late winter/spring, when CO 2
is returned to the atmosphere, a maximum occurs in April/May. This seasonal variation,

having a total amplitude of about 7 ppmV in the northere troposphere, is almost
undetectable within the lower stratosphere.

The existence of a shaped CO2 profile as shown in fig. I may be relevant for satellite

sounders that use the assumption of well-mixed C02 in the stratosphere to retrieve
temperatures from infrared spectral features.

Haloqenated hydrocarbons (halncarbnns)

V,rt._cal prof_leso--'_-o-f'--F_aaT'_vca---_,o--h-s'_r"e"_loLled i,l tiqures 2-12. Every data poi,t corresponds

to an air sample with s ampl_ng altitude ranges typically varying between 1-2 km at 35 km
and about 0.2-0.4 km at 10 km. The plotted altitudes correspond to the centers of the

sampling ranges. A careful error analysis has tn take i_to account the following
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Table 1 contd.

layer CCIF2-CF 3
(CFC-115)

surface & lower

troposphere 4.1
I0-!I k,n

CF a-CF3 CH 3C1
(CFC-116) (CFC-40)

4 ¢.17

11-12
12-13
13-t4
14-15
15-16
16-17
17-18
18-19
19-20
20-ZI km

21-22 km

72-23 kln

23-24 km
24-25 km

25-26 km

26.27 km
2/-28 km

2fi-29 km

2q-3_ km
3R_'-3V'ZG;

31-32 km

32-33 km

33-34 km

34-35 km

Correspo_dinq

to time
overall life

time

N/5 ratio

trend

km

km

km
km 3.1"

km
km
km
km 2.3

km +I0%

1.7

1.3(:

] .26

3.4

,._-I0%
3.]?!

2.92'

r i
1.oJ z.5_j

CHCIF2 CH3-CCI 3 CBrCIF 2 CBrF3
(CFC-221 (CFC-140) (CFC-12BI) (CFC-13BI)

73

r,r,.,_
_5.'

424 1 51.(_

377._ 52._
,48._ 5o.61
3116._w-2(1% 48.1 i

262._ 45.6_214.g 42. 11%

161._ 38.34.9_125.4_t35%

Jzo._ sz.ol
]uP. (. 29.8!
_13.1_-50%27.61

75.t 27.0!
fiS.l 76.1j

4z.l z5.31
30._ 24.01
2g.6 P4.6[
L'?. O,3_ 73.5 i

20.9 21._j19.8 19.

176 1.3 1.0

1n 1.4 F----'TT'_'_'_'_'_3_." 0.9 1

u_.Gi 1.231 t

76.O-tif)% 1 26J
69,II 1.15,+-70%

67.iI 1.OFI o._
69.7i 0.99

66.7_/-+20%0.84 I

6l .n i o.6_q
56.5] 0.56I

49,81 0.40 _6%
Zg. E, t30% O.?El| O.44

IgL_J 0.15;-+50%
ll.41 o.o_l o.17
6.32 ,5n't O.O?j
3 9b_
2.161

1.241 O. 06
0.1 +1oo%

Sept. sept. I Sept./Oct. Sept. Sept./Oct. S(_pt./Oet. Sept.

1980 19H0 1980-83 1982/83 1982/83 19B2-84 1980

230-550y i0 O00 y 2-3 y 12-2t'_y 5.7-10y 29-42y 62-]17y

_1 ,1 1 1.18 1.36 1.43 ?

g%ly* 6_.ly* 12%/y _%ly 20%/y 5%/y"

_iox

contributions: The samplin 9 altitode ranqe and its errors due to the fact that measured

pressures were converted into _Ititudes using the temperature distribution of a standard

atmosphere, the statistical errors related to sampling, possible contamination and anaiysis

leading to an overall precision of % (5-I0)%, and the errors of the absolute calibration

which are ±10% or less. The lowest detection limits are about 0.02 pptV for CFC-12BI, 0.1

pptV for CFC-IO, CFC-11, CFC-113, CFC-140, and CFC-13BI, and i pptV for CFC-12, CFC-13,

CFC-14, CFC-114, CFC-115, CFC-116, CFC-40, and CFC-22.

The data points nf the figures show a scatter, however, which is often considerably larger

than the quoted precision of 5-10%. This certainly reflects s_ne natural variabil;t), but

no seasonal effects as all data represent September/October conditions. The scatter is

particularly large in those portions of the profiles which show a larqe vertical gradient
of the mixing ratio suggesting that sampling height errors may be involved. CHaCI (fi9. 9)

is exceptional in revealing extremely large scatter between 20 and 30 km altitude. It is

not clear whether real natural variability or sample contamination may account for this
effect.

Thus, for calculating reference models for the different species, the individual errors
were not analysed for every data point. Instead, the points were averaged within 1-km

layers, and the standard deviations fro_ the respective mean values were calculated. ]t

appears that this mean standard deviation is a reasonable estimate of all statistical

errors within each layer. The average profiles thus obtained and the standard deviations
are plotted in the figures. They are also compiled in table I.

For CFC-13, CFC-14, CFC-II5, CFC-116, and CFC-13BI, only one measured profile was available
at all (see fig. 5, 6, 12, data points compiled in table I). Thus no averaging was

possible, More data points will bec_,e available soon. At MPAE, air samples collected

during balloon flights made 1983, 1984 and 1985 havekalready been analysed for those
constituents. The absolute calibration, however, has not been finished yet. ]t can be
concluded, however, that these new data confirm the vertical slopes of the species, shown



102

........ ii l J-,! .......

t i ^ ,,. :",
I i ....... i '
I t ,. i "'

,L,_ L L i
Illi il_, Ilil I- S- ....... ilO

VOIumP mixing folio (p.p.m.v.)

Figure 1. Vertical distribution of CO 2 between the ground and 35-kin altitude as analysed

by infrared absorption of whole air samples collected aboard balloon and aircraft platforms,

for 1979, 1982, and 1984. The height range of the balloon samples is shown by the
symbols. The modelled profile (solid line) computed by means of a one-dimensional time-
dependent model corresponds to 1980 conditions/10/.
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Figure 2. Vertical distribution of CCI 4 (CFC-10) at northern midlatitudes. Every data

point represents one whole-air sample collected during the year listed in the figure. Each
symbol represents data from a different flight or group of investigators, respectively. The

average profile and its error bars were obtained by averaging all data points within 1 km
layers. The points of this profile are compiled in Table 1. Sources: a,b/4/; c-f/6/; g/11/.
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Figure 3. Same as Figure 2 but for CC13F (CFC-11). Sources: a/3/; b/12/; c,e/13/; d
/6,8/; f/11/.
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Figure 4. Same as Figure 2 but for CC12F 2 (CFC-12). Sources: a/3/; b/12/; c,e/13/; d
/6,8/; f I11/.
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Figure 5. Vertical distribution of CC1F 3 (CFC-13) and CC1F2-CF 3) (CFC-115) at northern

midlatitudes. Sources: a/14/; b/15/; c/3/.
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Figure 6. Vertical distribution of CF 4 (CFC-14) and CF3-CF 3 (CFC-116) at northern

rnidlatitudes. Sources: a/16/; b/15/; c/14/; d/17/; e/3/.
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Figure 7. Same as Figure 2 but for CC]2F-CCIF 2 (CFC-113). Source:/18/.
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Figure 8. Same as Figure 2 but for CC1F2-CCIF 2 (CFC-114). Source:/19/.
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Figure 9. Same as Figure 2 but for CH3CI (CFC-40). Sources: a/3/; b/12/; c-f/6/; g/11/.
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Figure 12. Same as Figure 2 but for CBrC1F 2 (CFC-12BI). Vertical distribution of CBrF 3

(CFC-13BI) is also given. Sources: a-d/21/; e/11/; f/3/.
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in figures 5,6, and 12.

The proposed reference modei_ of halocarhons are compiled in table 1. Due to the errors
related Lu the absoh, te calibral._or_, _.._','y profile is _Lcur.to to within t|O_ For the time

period given at the bottom of the respective column. The sm,e accuracy may be assumed for

the surface and lower tropospheric mixing ratios shown in the first line of table 1. These

were obtained by averaging all published field data.

Since all stratospheric measurements presented here were made during September/October, the

tabulated values correspond to this time of year. On the basis of measurements made at KFA,

Schmidt et el. /8/ have argued that seasonal variations do occur. These are small, however,

and thus most likely included in the quoted standard deviations.

The given halocarbon profiles reflect northern mtdlatttude conditions. Corresponding

_outhern midlatitude data may be obtained by applying the N/S ratios also given in table 1,

which were derived from all available tropospheric halocarbons measurements. Tropical

profiles of CFC-II and CFC-12 are known to fa]] with height less rapidly than midlatitude

profiles /22/ as upward motion partly counteracts decomposition in this reg, n. A similar

effect can be expected for other halocarhons, but except for a few first exploratory data

/23/ no conclusive measurements are documented yet.

P_le to continuing anthropoqenic emission, atmospheric halocarbon abundances increase with

t_me. Present annual increase rates were evaluated ar,d also listed in table i. These trend

values base, wherever available on measured data. The trend values marked by an asterisk

were derived from time-dependent mode] computations at @4°AE based on available global

ernisslon scenarios.
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